AI app can tell if you want to swipe right
23 February 2023
Image: Andrew Higley
Using wearable technology, engineers are training up a computer that can if your date is really into you – and vice versa.
Could an app tell if a first date is just not that into you? Engineers at the University of Cincinnati say the technology might not be far off. They trained a computer – using data from wearable technology that measures respiration, heart rates and perspiration – to identify the type of conversation two people were having based on their physiological responses alone.
Researchers studied a phenomenon in which people’s heart rates, respiration and other autonomic nervous system responses become synchronised when they talk or collaborate. Known as physiological synchrony, this effect is stronger when two people engage deeply in a conversation or cooperate closely on a task.
“Physiological synchrony shows up even when people are talking over Zoom,” said study co-author Vesna Novak, Associate Professor of Electrical Engineering at UC’s College of Engineering and Applied Science.
In experiments with human participants, the computer was able to differentiate four different conversation scenarios with as much as 75 percent accuracy.
The study is one of the first of its kind to train artificial intelligence how to recognise aspects of a conversation based on the participants’ physiology alone.
Lead author and UC doctoral student Iman Chatterjee said a computer could give you honest feedback about your date – or yourself.
“The computer could tell if you’re a bore,” Chatterjee said. “A modified version of our system could measure the level of interest a person is taking in the conversation, how compatible the two of you are and how engaged the other person is in the conversation.”
Chatterjee said physiological synchrony is likely an evolutionary adaptation. Humans evolved to share and collaborate with each other, which manifests even at a subconscious level, he said.
“It is certainly no coincidence,” he said. “We only notice physiological synchrony when we measure it, but it probably creates a better level of coordination.”
Studies have shown that physiological synchrony can predict how well two people will work together to accomplish a task. The degree of synchrony also correlates with how much empathy a patient perceives in a therapist or the level of engagement students feel with their teachers.
“You could probably use our system to determine which people in an organisation work better together in a group and which are naturally antagonistic,” Chatterjee said.
This aspect of affective computing holds huge potential for providing real-time feedback for educators, therapists or even people with autism, Novak said
“There are a lot of potential applications in this space. We’ve seen it pitched to look for implicit bias. You might not even be aware of these biases,” he commented.