Tesys 100

All-purpose talent in aircraft manufacturing

26 April 2018

In aircraft manufacturing, much of the milling, drilling and assembly is still done by hand because the raw components vary not only in size and design, but also in shape accuracy. Small differences are unavoidable in extremely lightweight and elastic materials, which poses a challenge for automated processing. Working with an industrial consortium, Fraunhofer researchers developed a mobile robot that is able to handle these high requirements – the only robot in the world with this capability.

When automated machines are used in aircraft manufacturing today, they tend to be heavy, customised portal systems that slide slowly over the components on rails. However, as well as being expensive and inflexible, these systems stand idle for long periods, meaning their productivity levels are low.

“Our new robot is able to travel to the components autonomously and carry out all the requisite tasks there. Measuring, bonding, drilling, milling – it can do it all. The robot is an all-purpose machine and can be adapted quickly and flexibly to shape inaccuracies of large components as well as product and model modifications,” says Dr. Dirk Niermann, Head of the Automation and Production Technology department at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Stade. Whereas earlier robots have failed when it came to the high precision requirements in the aviation sector, the new robot has no such difficulties: the deviations in its machining results are less than half a millimetre.

Accuracy gains thanks to output-side measurement systems

“Above all, by integrating specially developed output-side measurement systems (so-called secondary encoders), we managed to substantially minimise error,” explains Christian Böhlmann, Group Manager for Integrated Production Systems. While the measurement technology is attached to the engine in conventional industrial robots, it is fitted directly to the axles of the new robot. “This way, we always know the exact position of the axles.” Other technologies also helped increase processing accuracy, including the control-side compensation of frictional adherence effects from the gears, and a refined calibration of the robot, by means of which one-off measurements are carried out to determine the true robot geometry, which is then factored into calculations of motion.

Because aviation components are often up to 20 metres in length, mobility was important when designing the new robot. “We developed a rigid platform with three drive wheels for the robot,” says Böhlmann. “This means it can move freely around the factory floor and go wherever it is needed at a given time. As soon as it reaches its destination, it draws in its wheels and stands in a stable position.”

In this way, the robot and other modular robotic production systems from Fraunhofer IFAM facilitate fluid, versatile manufacturing; they no longer pass through rigidly determined stations, but adapt quickly, flexibly and cost effectively to different requirements.

Visitors to the Hannover Messe trade show can gain a glimpse into the entire Research Factory Aircraft Assembly via a 360° video demonstrator at the Joint Fraunhofer Booth C22 in Hall 2. Equipped with VR goggles, they will have the opportunity to take a virtual tour and discover various automated manufacturing and assembly systems and take a closer look at individual technologies. 


Print this page | E-mail this page


Tesys 100

This website uses cookies primarily for visitor analytics. Certain pages will ask you to fill in contact details to receive additional information. On these pages you have the option of having the site log your details for future visits. Indicating you want the site to remember your details will place a cookie on your device. To view our full cookie policy, please click here. You can also view it at any time by going to our Contact Us page.